One-component description of magnetic excitations in the heavy-fermion compound CeIrIn₅

S. Kambe,¹ Y. Tokunaga,¹ H. Sakai,¹ H. Chudo,¹ Y. Haga,¹ T. D. Matsuda,¹ and R. E. Walstedt²

¹Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

²Physics Department, The University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 14 February 2010; published 21 April 2010)

We report an ¹¹⁵In NMR study of a single-crystal sample of the heavy-fermion compound CeIrIn₅. The observed nonlinear variation in Knight shift with static susceptibility is consistent with the two-fluid model of Nakatsuji *et al.* However, our results can also be understood in terms of a *T*-dependent hyperfine coupling, which accounts for the spin-lattice relaxation data naturally on the basis of a one-component dynamical susceptibility. In addition, the observed *T* dependence of the hyperfine coupling is scaled to a density of states given by dynamical mean-field theory.

DOI: 10.1103/PhysRevB.81.140405

PACS number(s): 75.30.Mb, 76.60.-k

In heavy-fermion compounds, f electrons having a localized nature at high temperatures are considered to form heavy quasiparticles through coupling with the conduction electrons at low temperatures.¹ Although this crossover to a heavy-fermion state has not been explained in detail, a recently proposed two-fluid model describes the crossover phenomenologically on the assumption of separate localized and heavy-fermion components.^{2,3} Further, it has been shown that the nonlinear relation between the NMR Knight shift Kand the static susceptibility χ that is observed in many heavy-fermion compounds can be explained with a two-fluid model scaling law, which is characterized by a scaling temperature $T^{*,4}$

Considering the success of the two-fluid description of the static properties K and χ , it appears that two individual contributions to static susceptibility exist in heavy-fermion compounds. However, the nonlinear K- χ relation can also be explained in terms of a T-dependent hyperfine coupling. In the present study, such a variable coupling has been found, in addition, to be consistent with spin-lattice relaxation time T_1 results for ¹¹⁵In in CeIrIn₅ in a picture based on a one-component dynamical susceptibility.

The heavy-fermion superconductor CeIrIn₅ has a large Sommerfeld coefficient γ_{el} =0.75 J/mol K² with a superconducting T_c of ~1.2 K.⁵ High-quality single-crystal samples have been prepared by the Czochralski method.⁶ The ¹¹⁵In NMR (I=9/2, gyromagnetic ratio γ_n =9.3295 MHz/T), measurements were carried out using a phase-coherent pulsed spectrometer. The NMR spectra which we analyze are field-sweep spectra taken at constant frequency ω_n =59.8 MHz. T_1 data were obtained using the standard spin-echo inversion-recovery method at ω_n ~75 MHz.

In the HoCoGa₅(I/4mmm)-structure compound CeIrIn₅, there are two crystallographically inequivalent In sites [In(1): the 1*c* site and In(2): the 4*i* site]. In(1) has tetragonal local symmetry, while the In(2) site is orthorhombic. To perform a comprehensive examination of the two-fluid model, *K* and T_1 have been measured at both In sites with applied magnetic field $H \parallel c$ axis([001]) and $H \parallel a$ axis([100]). The NMR shifts *K*, nuclear quadrupole frequencies ν_Q and asymmetry parameters η have been determined using an exact diagonalization method for the case of I=9/2. T_1 is determined for the central transition ($m=1/2 \leftrightarrow -1/2$) recovery which is well fitted with calculated curves for I=9/2, $\eta=0$ for In(1) and $\eta=0.461$ for In(2) sites. Since $\omega_n \ge \nu_Q$, the anisotropy of T_1 can be determined correctly even for $\eta \ne 0$ case. The linewidth of the In NMR spectrum is small ~ 0.1 kOe (inset to Fig. 1), guaranteeing a precise determination of *K* and T_1 .

Since the principal axis \vec{n}_{ZZ} of the electric field gradient tensor is perpendicular to the (100) plane at the In(2) site, two different In(2) site orientations (*i.e.* for K and T_1) are observed when $H \parallel a$: the In(2a) site ($H \perp \vec{n}_{ZZ}$) and the In(2b) site ($H \parallel \vec{n}_{ZZ}$). For the other cases, K and T_1 are determined uniquely. It should be noted that our results for ν_Q and η at both In(1) and In(2) sites are precisely consistent with previous zero-field nuclear quadrupole resonance (NQR) results.^{7,8}

Figure 1 shows the *T* dependence of the static susceptibility χ_{α} ($\alpha=a,c$ for H||a,c, respectively). The observed rapid increase in χ_c below 15 K is confirmed as an intrinsic property since it is independent of applied magnetic field. The inset to Fig. 2(a) shows the *T* dependence of $K_{i,\alpha}$, where i=1 and 2 for the In(1) and In(2) sites; $\alpha=a$ and *c* for H||aand H||c at the In(1) site; $\alpha=a, b$ and *c* for $H \perp \vec{n}_{ZZ}$ [In(2a)], $H||\vec{n}_{ZZ}$ [In(2b)], and H||c at the In(2) site, respectively.

In order to compare Knight shifts with the static susceptibility, plots of $K_{i,\alpha}$ versus χ_{α} (*K*- χ plots) are presented in Fig. 2. Above ~60 K, nearly linear relations between $K_{i,\alpha}$ and χ_{α} (here $\chi_a = \chi_b$) are found for all cases. From the nearly linear high-temperature slopes, the transferred hyperfine cou-

FIG. 1. (Color online) *T* dependence of the static susceptibility χ_{α} (α =*a*-axis and α =*c*-axis). The inset shows the In(2a) NMR spectrum for the central (m=1/2 \leftrightarrow -1/2) transition. All other spectra are similar to this.

FIG. 2. (Color online) Knight shift $K_{i,\alpha}$ versus static susceptibility χ_{α} plots for the In(1) (*i*=1) and In(2) (*i*=2) sites, a) for $H \parallel c$ -axis ($\alpha = c$), and b) for $H \parallel a$ -axis ($\alpha = a, b$). The non-linear behavior looks different for $H \parallel c$ -axis and $H \parallel a$ -axis, since χ_c increases with decreasing T more rapidly than χ_a (Fig. 1). $K_{1,c}^{ori}$ is indicated as an example of $K_{i,\alpha}^{ori}$. Inset: T-dependence of $K_{i,\alpha}$. Solid lines drawn are calculated curves based on Eq. (1). Size of symbols represents experimental error.

pling constants $A_{i,\alpha}^{ht}$ can be estimated (Table I).

With decreasing *T*, the *K*- χ plots deviate markedly from linearity. It is interesting to note that all such deviations scale reasonably well with the function χ_{α}^{hf} , as in

$$K_{i,\alpha}^{spin} \equiv K_{i,\alpha} - K_{i,\alpha}^0 = A_{i,\alpha}^{ht} \chi_\alpha + C_{i,\alpha} \chi_\alpha^{hf}, \qquad (1)$$

where $K_{i,\alpha}^{spin}$ is the *T*-dependent spin Knight shift, the $C_{i,\alpha}$ are certain constants, and $K_{i,\alpha}^0$ is a small constant Knight shift which may be orbital in origin (see below). Furthermore, the *T* dependence of χ_{α}^{hf} is very nearly proportional to the density of states D(T) given by the results of dynamical mean-field-theory (DMFT) calculations, ${}^9\chi_{\alpha}^{hf} \propto D(T)$. We have chosen the $C_{i,\alpha}$ so that χ_{α}^{hf} fits with the enhanced Pauli paramagnetic susceptibility estimated from D(T), thus

TABLE I. Transferred hyperfine coupling constants $A_{i,\alpha}^{ht}$ and $C_{i,\alpha}$ (in kOe/ μ_B) for $K_{i,\alpha}$.

-			
	$\alpha = a$	$\alpha = b$	$\alpha = c$
$A_{1,\alpha}^{ht}$	12.2 ± 0.3		16.4 ± 0.3
$A_{2,\alpha}^{ht}$	21.5 ± 0.3	14.5 ± 0.3	15.9 ± 0.3
$C_{1,\alpha}$	-0.65 ± 0.03		-3.1 ± 0.1
$C_{2,\alpha}$	-6.5 ± 0.2	-6.5 ± 0.2	9.3 ± 0.3

PHYSICAL REVIEW B 81, 140405(R) (2010)

FIG. 3. (Color online) Open circles: Density of states D(T) from DMFT calculation (Ref. 9). Solid line is *T*-dependence of $\chi_{\alpha}^{hf}/g_{\alpha}\mu_{R}^{2}\lambda^{*}$ which is compared with all $K-\chi$ plots using Eq. (1).

 $\chi_{\alpha}^{hf} \simeq 0.5 g_{\alpha}^{2} \mu_{B}^{2} \lambda^{*} D(T)$ $(g_{a} = g_{b} = 1.31, g_{c} = 1.92)$ as shown in Fig. 3, where g_{α} is determined by the condition that $0.5 g_{\alpha}^{2} \mu_{B}^{2} \lambda^{*} D(T)$ agrees with χ_{α} at $T \sim 0$ K, the mass enhancement factor λ^{*} is $\sim 10.^{10}$ The corresponding values of $C_{i,\alpha}$ (hyperfine coupling dimensions) so determined are given in Table I. The anisotropy of the $A_{i,\alpha}^{ht}$ and $C_{i,\alpha}$ parameters is due to the anisotropy of the transferred hyperfine couplings. The small constant $K_{i,\alpha}^{0}$ is determined by $K_{i,\alpha}^{0} = K_{i,\alpha}^{ori} - C_{i,\alpha}g_{\alpha}\mu_{B}^{2}\lambda^{*}D^{ht} \simeq K_{i,\alpha}^{ori}$ where $K_{i,\alpha}^{ori}$ is the extrapolated value of $K_{i,\alpha}$ at $\chi_{\alpha} = 0$ [e.g., see Fig. 2(a)], and $D^{ht} \simeq 0.4$ (states/eV) is the high-temperature limiting value of D(T).⁹ In Fig. 2 calculated (solid) lines based on Eq. (1) are presented, showing good agreement with measured shift curves.

These findings are essentially the same as observations on many heavy-fermion compounds based on the two-fluid model.^{3,4} In the frame of the two-fluid model,³ the two components of NMR shift can be expressed as $K_{i,\alpha}^{spin} = A_{i,\alpha}^{ht} [1 - f(T)] \chi_{\alpha}^{SL} + (A_{i,\alpha}^{ht} + C_{i,\alpha}) f(T) \chi_{\alpha}^{KL}$, where $[1 - f(T)] \chi_{\alpha}^{SL}$ is the localized component susceptibility, $f(T) \chi_{\alpha}^{KL}$ is the heavy-fermion component susceptibility, and $\chi_{\alpha} \approx [1 - f(T)] \chi_{\alpha}^{SL} + f(T) \chi_{\alpha}^{KL}$. In fact the scaling function of the two-fluid model $f(T) \sim (1 - T/T^*)^{1.5}$ $(T^* \sim 31 \text{ K})$ is confirmed to be consistent with $D(T) \propto f(T) \chi_{\alpha}^{KL} \approx \chi_{\alpha}^{hf}$ for CeIrIn₅.³

The present results show that all deviations scale to the unique function D(T) for both In sites and all applied field orientations. Thus T^* is an isotropic "thermodynamical" quantity characterizing low-lying states of the system. The observed T^* is isotropic under magnetic field ~ 7 T although it was pointed out that an applied magnetic field may cause T^* to become anisotropic.¹¹ Indeed, recent NMR measurements suggest an isotropic nature for T^* in CeCoIn₅, except for the In(2) site.¹²

In addition to the two-fluid picture, the observed nonlinear K- χ relation can also be interpreted in a different way. If the heavy-fermion and localized components were merged into a single component, the nonlinear behavior could simply be seen as a modification of the hyperfine coupling for the total χ_{a} . In this "merged, one-component" case, the hyperfine coupling constant becomes *T* dependent

$$K_{i,\alpha}^{spin} = \{A_{i,\alpha}^{ht} + C_{i,\alpha}\chi_{\alpha}^{hf}/\chi_{\alpha}\}\chi_{\alpha} \equiv A_{i,\alpha}(T)\chi_{\alpha}, \qquad (2)$$

where the *T*-dependent hyperfine coupling constant $A_{i,\alpha}(T)$ asymptotically approaches $A_{i,\alpha}^{ht}$ at high *T*. In this description,

the change $\Delta A_{i,\alpha}(T) \equiv C_{i,\alpha} \chi_{\alpha}^{hf} / \chi_{\alpha}$ is scaled to a proportion of the heavy-fermion component $\chi_{\alpha}^{hf} / \chi_{\alpha} \simeq g_{\alpha} \mu_B^2 \lambda^* D(T) / \chi_{\alpha}$. At the same time, the measured χ_{α} increases owing to the contribution from χ_{α}^{hf} . The scaling between $\Delta A_{i,\alpha}(T)$ and D(T)indicates that the hybridization at the In site is modified due to heavy-fermion formation.

Concerning the relation between $A_{i,\alpha}(T)$ and D(T), it is difficult to distinguish between Eqs. (1) and (2) on the basis of the K- χ result. In contrast, the T_1 results are quite useful for distinguishing them as described below.

We define subcomponents of the spin-lattice relaxation rates from fluctuations along the α axes: $R_{i,\alpha} \equiv \gamma_n^2 \sum_q A_{i,\alpha}^2 \chi_{\alpha}''(q,\omega_n) / \omega_n$, where $\chi_{\alpha}''(q,\omega_n)$ is the dynamical susceptibility tensor at frequency ω_n . $\chi_{\alpha}''(q,\omega_n)$ originates with the 4*f* moments on the tetragonal Ce sites and has components $\chi_a''(q,\omega_n) = \chi_b''(q,\omega_n)$ and $\chi_c''(q,\omega_n)$. $A_{i,\alpha}(q)$ is the transferred hyperfine coupling constant at the In sites. Effects of the *q* dependences of $A_{i,\alpha}(q)$ and $\chi_{\alpha}''(q,\omega_n)$ will be touched upon below. At the In(1) site, $1/(T_1T)_{H||\alpha}$ $= R_{1,a} + R_{1,c}$, and $1/(T_1T)_{H||c} = 2R_{1,a}$. At the In(2) site, $1/(T_1T)_{H\perp\bar{n}_{ZZ}} = R_{2,b} + R_{2,c}$; $1/(T_1T)_{H||\bar{n}_{ZZ}} = R_{2,c} + R_{2,a}$; and $1/(T_1T)_{H||c} = R_{2,a} + R_{2,b}$.¹³

Figures 4(a) and 4(b) show the *T* dependences of the $R_{i,\alpha}$ determined using the foregoing equations. As expected, the rate components increase with decreasing *T* along with χ_{α} . However, it is striking that $R_{1,c}$ and $R_{2,c}$ show contrasting *T* dependences at low *T*. Since the In sites probe transferred hyperfine fields from the Ce site, $R_{1,c}$ and $R_{2,c}$ should be proportional to each other if they correspond to unique magnetic fluctuations at the Ce site along the *c* axis. The observed discrepancy indicates that $R_{1,c}$ and $R_{2,c}$ probe the transferred hyperfine fields from the Ce site along the *c* axis.

We may try to explain this complex behavior on the basis of a two-fluid picture assuming no coherence between the two components. For such a case, $R_{i,\alpha}$ may be expressed as

$$R_{i,\alpha} \simeq R_{i,\alpha}^{incoh} \equiv (A_{i,\alpha}^{ht})^2 [1 - f(T)] \operatorname{Im} \chi_{\alpha}^{SL} + (A_{i,\alpha}^{ht} + C_{i,\alpha})^2 f(T) \operatorname{Im} \chi_{\alpha}^{KL}$$
(3)

with the normalized dynamical susceptibility Im $\chi_{\alpha}^{SL,KL} \equiv \gamma_n^2 \chi_{\alpha}^{"SL,KL}(q,\omega_n)/\omega_n$. Based on Eq. (3) and Table I, the *T* dependence of Im χ_{α}^{SL} and Im χ_{α}^{KL} should be obtainable from $R_{1,\alpha}$ and $R_{2,\alpha}$ below $T^*=31$ K without any adjustable parameters. However, as shown in Fig. 4(c), estimated values for Im χ_c^{SL} and Im χ_{α}^{KL} become negative, showing a peculiar *T* dependence. Furthermore, Im χ_{α}^{KL} is not proportional to Im χ_c^{KL} in spite of the fact that $\chi_a^{hf} \propto \chi_c^{hf}$. Thus, the "noncoherent" two-fluid picture does not appear to be physically viable.¹⁴ However, we note that it has been reported that the NQR T_1 at the In(1) site in CeCoIn₅ can be explained qualitatively using a noncoherent, two-fluid model if a particular *T* dependence of Im χ_{α}^{SL} is assumed.¹²

On the other hand for the merged one-component case, the normalized one-component dynamical susceptibility Im $\chi_{i,\alpha} \equiv \gamma_n^2 \chi_{i,\alpha}''(q, \omega_n) / \omega_n$ can be simply estimated with

$$R_{i,\alpha} \simeq R_{i,\alpha}^{coh} \equiv A_{i,\alpha}(T)^2 \operatorname{Im} \chi_{i,\alpha}.$$
 (4)

Figure 4(d) shows the *T* dependence of the four dissipative terms Im $\chi_{i,\alpha}$ (*i*=1,2 α =*a*,*c*) estimated in this fashion. In

PHYSICAL REVIEW B 81, 140405(R) (2010)

FIG. 4. (Color online) (a) *T*-dependence of spin-lattice relaxation rates along a-axis: $R_{1,a} R_{2,a}$ and b-axis: $R_{2,b}$. b) *T*-dependence of spin-lattice relaxation rates along c-axis: $R_{1,c}$ and $R_{2,c}$. c) *T*-dependence of Im χ_{α}^{SL} and Im χ_{α}^{KL} on assumption of an incoherent two-fluid description estimated using Eq. (3). Size of symbols represents an experimental error. d) *T*-dependence of Im $\chi_{i,\alpha}$ using Eq. (4) based on a merged one-component description.

this limit, the Im $\chi_{i,\alpha}$ all increase naturally with decreasing *T*. At high *T*, relations naturally expected for transferred hyperfine fields from a unique Ce site, i.e. Im $\chi_{1,c} \sim \text{Im } \chi_{2,c}$, and Im $\chi_{1,a} \sim \text{Im } \chi_{2,a}$, are confirmed.¹⁵ The consistent results we find with Eq. (4) indicate that it is not necessary to introduce a two-component dynamical susceptibility. Although it is not clear how localized and heavy-fermion components merge in the one-component picture, the present results suggest that they merge smoothly to form a single dynamical entity, while treating them as independent entities yields apparently unphysical results.

Above 100 K, the product $T \times \text{Im } \chi_{i,\alpha}$ becomes asymptotically constant, indicating that the excitation behavior approaches that of localized 4*f* moment fluctuations. Below 30 K, in contrast to high *T*, Im $\chi_{2,\alpha}$ is larger than Im $\chi_{1,\alpha}$. This can be explained if fluctuations develop at the antiferromagnetic wave vector *Q*: $\chi''_{\alpha}(Q, \omega_n) > \chi''_{\alpha}(0, \omega_n)$ at low *T*. Such fluctuations would cancel completely at the In(1) site but not at the In(2) site because of different *q* dependences for

 $A_{i,\alpha}(q)$.¹⁶ Meanwhile, anisotropy of the fluctuations Im $\chi_{i,a}/\text{Im }\chi_{i,c}$ also develops, indicating that CeIrIn₅ is approaching an antiferromagnetically ordered state with an ordered moment in the (001) plane. Such an ordered state was in fact observed for CeRhIn₅.¹⁷ The same anisotropy is also enhanced at low *T* in CeCoIn₅.¹⁸

The relation Im $\chi_{1,a} \propto (T+8 \text{ K})^{-3/4}$ is obtained below 100 K as well, consistent with a previous NQR T_1 result for the In(1) site.^{7,8} However, the exponent -3/4 is not universal since it has a value ~ -1 for Im $\chi_{2,a}$ while it is difficult to define such an exponent for Im $\chi_{i,c}$. The anisotropy of the fluctuations is considered to characterize the nature of the magnetism in any particular case.

The estimated anisotropy of the dynamical susceptibility (Im $\chi_a > \text{Im } \chi_c$) is opposite to that of the static susceptibility χ_{α} ($\chi_c > \chi_a$) at low *T*, which may be due to *q*-dependent exchange interactions. Previously we have pointed out that this *XY*-type of magnetic fluctuation anisotropy, i.e. Im $\chi_a \gg \text{Im } \chi_c$, is favorable for antiferromagnetic *d*-wave

- ¹J. Flouquet, in *Heavy Fermion Matter*, Progress in Low Temperature Physics Vol. XV, edited by W. Halperin (Elsevier, New York, 2005), p. 3.
- ²S. Nakatsuji, D. Pines, and Z. Fisk, Phys. Rev. Lett. **92**, 016401 (2004).
- ³Y. F. Yang and D. Pines, Phys. Rev. Lett. **100**, 096404 (2008).
- ⁴N. J. Curro, B. L. Young, J. Schmalian, and D. Pines, Phys. Rev. B **70**, 235117 (2004).
- ⁵C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. **53**, 354 (2001).
- ⁶T. Takeuchi, T. Inoue, K. Sugiyama, D. Aoki, Y. Tokiwa, Y. Haga, K. Kindo, and Y. Ōnuki, J. Phys. Soc. Jpn. **70**, 877 (2001).
- ⁷G.-q. Zheng, K. Tanabe, T. Mito, S. Kawasaki, Y. Kitaoka, D. Aoki, Y. Haga, and Y. Onuki, Phys. Rev. Lett. 86, 4664 (2001).
- ⁸Y. Kohori, Y. Yamato, Y. Iwamoto, T. Kohara, E. D. Bauer, M. B. Maple, and J. L. Sarrao, Phys. Rev. B 64, 134526 (2001).
- ⁹J. H. Shim, K. Haule, and G. Kotliar, Science **318**, 1615 (2007). ¹⁰ $\lambda^* \equiv \gamma_{el} / \gamma_{cal}$ where $\gamma_{cal} = \frac{\pi^2}{3} k_B^2 D(T) = 0.073$ J/mol K² is calcu-
- lated Sommerfeld coefficient for D(T)=12 (states/eV). ¹¹ K. Ohishi, R. H. Heffner, T. U. Ito, W. Higemoto, G. D. Morris,
- N. Hur, E. D. Bauer, J. L. Sarrao, J. D. Thompson, D. E. Mac-Laughlin, and L. Shu, Phys. Rev. B **80**, 125104 (2009).
- ¹²Y. F. Yang, R. Urbano, N. J. Curro, D. Pines, and E. D. Bauer, Phys. Rev. Lett. **103**, 197004 (2009).

superconductivity.¹⁹ The present example reinforces this hypothesis.

In conclusion, the nonlinear $K \cdot \chi$ relation is well described phenomenologically by the two-fluid model in CeIrIn₅. However, this could also be interpreted in a one-component picture, where the transferred hyperfine coupling is modified by a contribution scaled to the quasiparticle density of states. The latter effect is seen clearly in the shift results. Such a description suggests that a one-component dynamical susceptibility can successfully describe the magnetic fluctuations in a heavy-fermion system. How such a one-component dynamical susceptibility can be reconciled with a static susceptibility apparently composed of two contributions remains to be resolved.

We thank K. Ohishi, R. H. Heffner, and T. Takimoto for stimulating discussions. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Heavy Electrons" of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

- ¹³S. Kambe, H. Sakai, H. Kato, Y. Tokunaga, T. Fujimoto, R. E. Walstedt, S. Ikeda, T. Maehira, Y. Haga, and Y. Onuki, Phys. Rev. B **76**, 024411 (2007).
- ¹⁴The estimated static susceptibilities χ_{α}^{KL} and χ_{α}^{SL} remain sound (Ref. 3). Thus, inconsistency appears only for the dynamical susceptibility, probably owing to the assumption of incoherence. In order to include coherence in the frame of a noncoherent two-fluid description by force, it is necessary to formulate an additional coherent term $\phi_{i,\alpha}$: $R_{i,\alpha} \approx R_{i,\alpha}^{incoh} + \phi_{i,\alpha}$. However, $\phi_{i,\alpha}$ depends strongly on the model used for the coherence.
- ¹⁵ For Im $\chi_{2,b}$, a relation Im $\chi_{2,b} \simeq (A_{2,a}^{ht}/A_{2,b}^{ht})^2$ Im $\chi_{2,a}$ is obtained, indicating that the generally expected relation Im $\chi_{2,b} \simeq$ Im $\chi_{2,a}$ may be modified due to off-diagonal contributions to $A_{2,b}^{ht}$. Actually, the effective $A_{2,b}^{ht}$ for spin-lattice relaxation is considered to be similar to $A_{2,a}^{ht}$.
- ¹⁶S. Kambe, H. Sakai, Y. Tokunaga, H. Kato, T. Fujimoto, R. E. Walstedt, S. Ikeda, T. D. Matsuda, Y. Haga, D. Aoki, Y. Homma, Y. Shiokawa, and Y. Ōnuki, J. Magn. Magn. Mater. **310**, 176 (2007).
- ¹⁷W. Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J. W. Lynn, and R. W. Erwin, Phys. Rev. B **62**, R14621 (2000).
- ¹⁸N. J. Curro and D. Pines, J. Phys. Chem. Solids **68**, 2028 (2007).
- ¹⁹S. Kambe, H. Sakai, Y. Tokunaga, T. Fujimoto, R. E. Walstedt, S. Ikeda, D. Aoki, Y. Homma, Y. Haga, Y. Shiokawa, and Y. Ōnuki, Phys. Rev. B **75**, 140509(R) (2007).